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Traces and determinants of strongly stochastic operators

C. P. Dettmann*
Niels Bohr Institute, Blegdamsvej 17, 2100 Ko”benhavn O” , Denmark

~Received 24 July 1998!

Periodic orbit theory allows calculations of long-time properties of chaotic systems from traces, dynamical
zeta functions, and spectral determinants of deterministic evolution operators, which are in turn evaluated in
terms of periodic orbits. For the case of stochastic dynamics a direct numerical evaluation of the trace of an
evolution operator is possible as a multidimensional integral. Techniques for evaluating such path integrals are
discussed. Using as an example the logistic mapf (x)5lx(12x) with moderate to strong additive Gaussian
noise, rapid convergence is demonstrated for all values ofl with strong noise as well as at fixedl55 for all
noise levels.@S1063-651X~99!10604-4#

PACS number~s!: 05.45.2a, 02.50.Ey, 02.60.Jh
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I. INTRODUCTION

Periodic orbit theory is a remarkable tool in classic
@1–3# and quantum@4,5# chaotic systems, permitting th
evaluation of long-time properties, such as escape rates
namical averages, and energy levels in terms of short
stable recurrent motions, that is, periodic orbits or ‘‘cycles
In classical hyperbolic systems with known topology, su
as the repeller of the map 5x(12x) discussed below, con
vergence can be impressive: the escape rate is comput
nine digits from the eight cycles of period 4 or less. T
lowest energy levels of helium@6# are computed to an accu
racy far better than would be expected from a semiclass
approximation. Even when there is intermittency, hence
perbolicity is lost, it is possible to get sensible results us
special techniques in both the classical@7,8# and quantum@9#
cases.

Recently the theory has been extended to classical
tems with weak additive noise, using Feynmann diagra
@10# or smooth conjugacy techniques@11#. There are a num-
ber of motivations for such extensions: noise at some leve
present in all physical systems; it regularizes the theory,
placing Diracd functions by smooth kernels~see below! and
fractal distributions by smooth functions. There is also so
hope that the noise may effectively truncate the theory, r
dering irrelevant contributions from periodic orbits long
than the finite memory of the system.

The result of these investigations is a weak noise per
bation theory, representing the trace of the evolution oper
and derived quantities as a power series expansion ins, the
noise level. The coefficients are combinations of higher
rivatives of the map evaluated at the periodic orbits of
deterministic unperturbed system. Numerically, the coe
cients themselves converge at a similar rate to the clas
periodic orbit theory, but the power series ins is useful only
for weak noise, say,s,0.03, suggesting the following ques
tion, the subject of this paper:

To what extent does periodic orbit theory survive stro
noise, and how fast does it converge?

Strong noise differs qualitatively from weak noise in
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number of respects: The stochastic dynamics is equally c
to many slightly different deterministic dynamical system
so, the concept of a unique perturbation theory becomes
defined, in addition to the lack of convergence of such
theory. Also, Gaussian noise has no preferred status;
weakly stochastic systems, all types of noise distributio
with a given variances2 are identical to orders2.

The approach taken here is that the relevant quantity,
trace of an evolution operator, is evaluated numerically,
ing very little detailed information about the dynamics,
particular without reference to periodic orbits. The method
general enough to include any type of dynamics~hyperbolic,
intermittent, attracting! and uncorrelated noise, subject
smoothness of both dynamics and the noise distribution, w
the latter decaying exponentially at large distances. Here
in Refs.@10,11# the noise is additive, but this is not a nece
sary condition.

From the trace, it is straightforward to construct the sp
tral determinant, and hence highly convergent expansions
escape rates and dynamical averages, in the spirit of cu
lant expansions, as in standard periodic orbit theory. This
some similarities to Ref.@12#, where various approximation
to the quantum trace are compared.

Section II outlines the formalism required for the calcu
tion; in particular, casting the trace as a multidimensio
integral. Section III discusses numerical approaches
evaluating this integral. The results are given in Sec. IV a
discussed in Sec. V.

II. FORMALISM

The goal is to determine the long-time properties of s
chastic dynamical systems, here one-dimensional maps
additive noise:

xn115 f ~xn!1sjn , ~1!

where f (x) is a known function, for example the logisti
map,

f ~x!5lx~12x!. ~2!
5231 ©1999 The American Physical Society
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s is a measure of the strength of the noise andjn are inde-
pendent identically distributed random variables with u
variance,

^jmjn&5dmn , ~3!

such as a normalized Gaussian distribution. The meth
used here are equally applicable tos andj that depend onx,
and non-Gaussian noise distributions.

Instead of the Langevin form~1!, it is more convenient to
consider the discrete Fokker-Planck equation for a proba
ity distributionr(x) transported by the dynamics and diffu
ing due to the noise:

rn11~x![L@rn#~x!5E ds„x2 f ~x8!…rn~x8!dx8, ~4!

whereds(y) is the noise kernel, for example,

ds~y!5
e2y2/~2s2!

sA2p
, ~5!

reducing to a Diracd in the deterministics50 limit.
Long-time properties of the dynamics are obtained fr

the leading eigenvalue~s! of the linear evolution operatorL,
which are ~the inverses of! solutions of the characteristi
equation

det~12zL!50. ~6!

For example, the probability of a point initially in an ope
system remaining there aftern iterations is typically propor-
tional toe2gn where the escape rateg is related to the lead
ing zeroz0 by

g52 ln z0 . ~7!

Dynamical averages and diffusion coefficients can be
tained from the leading zero of appropriately weighted e
lution operators@1–3#.

The spectral determinant~6! of an infinite dimensional
operator may be defined by its cumulant expansion in pow
of z, using the matrix relation ln det5tr ln and Taylor ex-
panding the logarithm:

det~12zL!5expS 2 (
n51

`
zn

n
trL nD

512z trL1
z2

2
@~ trL!22trL 2#2 . . .

[ (
n50

`

Qnzn. ~8!

Qn may be obtained from all the tracesLm with m<n, and
an approximation forz0 is obtained by numerical root find
ing on thenth degree polynomial given by the truncation
the determinant. The above expression forQn quickly gets
complicated; it is easier to expand the derivative

2z
d

dz
det~12zL!5det~12zL! (

n51

`

zn trL n, ~9!
t

ds

il-

-
-

rs

which leads to the recursive equation

Qn5
1

nS trL n2 (
m51

n21

Qm trL n2mD . ~10!

The utility of the cumulant expansion as a method to c
culate the leading eigenvalue~s! depends on a rapid decrea
of the Qn with n, corresponding to widely spaced eigenva
ues. For example, an isolated fixed point of stabilityL with-
out noise has eigenvalueszm5uLuLm, m50,1,2, . . . and
cumulantsQn;L2n(n11)/2. This superexponential conver
gence is characteristic of hyperbolic systems, and also, ju
ing by the results below, stochastic systems. For ot
classes of operators more general methods may be requ

The trace in Eq.~10! is straightforward to write down as
an n-dimensional integral, a discrete periodic chain remin
cent of a path integral, obtained in Ref.@13#,

trL n5E )
j 50

n21

dxj )
j 50

n21

ds„xj 112 f ~xj !…, ~11!

where the indexj is cyclic, soxn5x0. In the noiseless (s
50) limit, the integrand is a product of Diracd functions,
and the trace is given by a sum over the fixed points off n,
that is, then cycles of f . In Refs. @10,11# the weak noise
limit is obtained by a saddlepoint expansion of the integ
around these cycles. Here, the integral is performed num
cally, up ton55, as described in the following section.

III. NUMERICAL METHODS

The required quantities, trL n, are n-dimensional inte-
grals, which in the case of weak noise (s!1) have a large
number of sharp peaks surrounding the periodic points of
deterministic map. Obtaining an accurate numerical estim
of the integral for anyn.2 seems prohibitively difficult,
since Monte Carlo approaches take too long to converge,
direct integration schemes require a small step size, but c
a large configuration space. See Ref.@14# for more discus-
sion.

In the case of Gaussian~or similar! noise and smooth
dynamicsf (x) the integrand is smooth and decays expon
tially fast at the boundaries. This in turn implies that t
simplest possible integration algorithm, summing the in
grand at a cubic array of coordinate values, converges fa
than any power of the step size, and is typically exponen
once the step size is smaller thans.

This remarkable convergence rate for smooth, expon
tially decaying integrands follows from the observation th
by multiplying the terms near the boundary by appropri
factors, it is possible to obtain algorithms of higher a
higher order in the step size@14#. Exponentially decaying
integrands are impervious to any such coefficients, and
converge faster than any power of the step size.

Note also, that having chosen, say,x0 and x1, and the
argument of the exponential,2„x12 f (x0)…2/(2s2) happens
to be too small, it is not necessary to consider the otherxj .
This provides a very substantial savings in time forn.2.

Finally, the integral is symmetric under a cyclic inte
change of thexj : this implies an additional saving of a facto
n. The logic required here is not trivial since the contributi
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differs depending on whether some of thexj are identical.
For example, forn54, choose two valuesxmin and xmax
beyond which there is no possible contribution. Then s
xmin<x0<xmax, definingx0 to be the largest of thexj , and
the one occurring first, if more than one are maximum. S
xmin<x1<x0, checking that the argument of the exponent
is not too small. Sumxmin<x2<x0, again checking the ar
gument of the exponential. Then sumxmin<x3,x0, and
multiply each contribution by 4. Ifx25x0, thexj could form
a 2 cycle repeated twice, so whenx35x1 count the term
twice instead of four times, and stop the sum overx3 to
avoid double counting. Finally, the repeated fixed pointx0
5x15x25x3 has been excluded, so sum this explicitly a
count it once. The casen55 is simpler as there is only
repeated fixed point, but there are more possibilities
which of thexj are maximum.

Even with the above short cuts, largen, small s, and
stringent precision requirements can lead to sums of9

terms. This means it is advisable to group them in size~using
the argument of the exponential! as they are summed; then
combine the groups from smallest to largest to minim
roundoff error.

Given the above algorithm the step sizeh is decreased
until two successive estimates agree to within a speci
precision~for example, ten digits!. Since the amount of time
increases ash2n, the optimal sequence is probablyhj
5h0e2 j /n. Note that large initial values ofh can lead to a
zero result as the entire contribution region may be miss

With the above algorithm, calculation of the trace up
n55 with s>0.01, andn56 for somewhat higher values o
s, is feasible for the case of Gaussian noise and smo
one-dimensional dynamics.

IV. RESULTS

The logistic mapf (x)5lx(12x) for various values ofl
exhibits most of the behaviors observed in one-dimensio
maps. For alll>1 any initialx outside the range@0,1# ends
up at 2`, while the behavior of points within this rang
depend onl as follows: For 0<l<1, the pointx50 is a
stable fixed point, marginally so atl51, and then unstable
for l.1. For 1<l<3, the fixed pointx5121/l is stable,
and then bifurcates to a stable cycle of period 2. This cycl
turn becomes unstable, bifurcating to a 4 cycle, then an 8
cycle, and so on, tol'3.57 at which point a chaotic attrac
tor forms. The period doubling cascade in the presence
weak noise may be described by the renormalization
proach of Ref.@13#. At larger values ofl more stable cycles
are created, including a 3 cycle, which is stable atl53.84,
leading to a pattern of alternating stable ‘‘windows’’ su
rounded by nonattracting unstable cycles and chaotic att
tors containing many unstable cycles. Atl54 the attractor
fills the interval@0,1#, and in this case, the Ulam map, th
dynamics is exactly solvable. Forl.4 almost all initial con-
ditions leave the interval, but infinitely many unstable cyc
remain, the closure of which forms a fractal repeller with
well-defined escape rate.

Imposing additive noise to the logistic map leads to
cape for alll.0, although this may be very unlikely ifs is
small. At l52, for example, every point~except the end-
points! is attracted to the stable fixed point atx51/2, and the
l
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noise must move the trajectory out of the interval to esca
In cases like this, the stochastic behavior is analogous
quantum tunneling, and is exponentially suppressed for sm
s. At bifurcation points, includingl51, the stability of the
relevant cycles is marginal, leading to intermittency. Ma
ginal cycles are difficult to treat using cycle expansions, a
it is one of the goals of this paper to understand how t
poor convergence is modified by the presence of noise.

The results of numerical evaluation of trL n up to n55
are shown in Table I. The spectral determinant is evalua
using Eq.~10!, andQ5, the coefficient ofz5 is noted. Since
for the parameters shown, the first zero of the determinan
close to 1,2 log10uQ5u gives roughly the number of signifi
cant digits ofz, and hence the escape rate is evaluated tn
54. It also gives the approximate range ofz over which the
n54 approximation is valid.

It is seen that, for the trivial casel50, corresponding to
pure noise, and for strong noises51, the calculation is lim-
ited by the double precision arithmetic: evaluation of t
trace beyondn54 is superfluous at this level of precision
Almost as precise is the casel55, which has a repeller with
complete binary symbolic dynamics in the absence of no
and hence is an ideal candidate for cycle expansion meth
Nine significant digits are obtained atn54, corresponding to
just 8 cycles. The presence of noise makes methods base
enumerating these cycles more difficult@10,11#, but conver-
gence is rapid at any noise level.

The other cases, where escape is induced by the pres
of noise, do rather poorly for small noise. The significance
l51, 2, 3, 3.57, 3.84, and 4 are discussed above; the o
values in Table I arel53.5, which contains a stable 4 cycle
and l53.72 that is not near any large stable window, a
numerically exhibits a chaotic attractor, although mathem
cal proof is difficult. The nature of the underlying attract
seems to have little effect on the rate of convergence, ex
that the intermittent case (l53 and particularlyl51) is
divergent ats50.01 to this level of approximation; the es
cape rate probably converges at impossibly largen, either
for the current numerical approach, or for standard cy
expansion techniques. In the other cases, particul

TABLE I. Convergence of the spectral determinant, as m
sured by2 log10uQ5u, whereQ5 is the coefficient ofz5 in the cu-
mulant expansion~8! for various types of dynamics of the logisti
map~2!. Larger numbers imply faster convergence, giving roug
the number of converged digits in the escape rate calculatedn
54.

s
l Type 0.01 0.03 0.1 0.3 1

0 Pure noise 12.7 12.7 12.4 12.7 12.6
1 Intermittent 22.3 20.8 1.2 3.8 8.5
2 Stable 1 cycle 2.5 2.2 2.1 5.9 11.8
3 Bifurcation 20.3 0.7 2.8 7.4 13.2
3.5 Stable 4 cycle 0.3 1.4 3.4 7.8 13.2
3.57 ` cycle 0.4 1.1 3.6 7.8 13.3
3.72 Chaos 1.5 1.4 4.1 8.0 13.4
3.84 Stable 3 cycle 1.6 2.4 4.6 8.1 13.4
4 Ulam map 2.2 2.9 4.9 8.2 13.8
5 Repeller 9.2 9.1 8.4 9.1 13.3
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5234 PRE 59C. P. DETTMANN
towards largerl, the expansion appears to be convergi
albeit slowly.

V. DISCUSSION

To summarize: It is feasible to evaluate a stochastic tr
directly in terms of multidimensional integrals, because
numerical evaluation of such integrals converges expon
tially with the number of steps. Cumulant expansions can
applied to classical dynamics with strong external noise,
though there is as yet no periodic orbit theory in this regi
with which to evaluate the trace. The convergence of
cumulant expansions is improved by the noise, whether
underlying dynamics is hyperbolic, intermittent, or stable.
the case of strong noise (s.0.3 in the present context! or
hyperbolic underlying dynamics, the cumulant expansion
fourth order is sufficient to compute the leading eigenva
to respectable accuracy~roughly eight digits here!.

What are the optimal methods for determining the lon
time properties of stochastic systems? The strong noise
is best treated by numerical evaluation of the trace, descr
here, requiring little knowledge of the underlying dynamic
The elements of periodic orbit theory, traces, and deter
nants indeed survive strong noise and converge rapi
without reference to periodic orbits. This means that a~hy-
pothetical! periodic orbit approach to strong noise based
cumulant expansions could be expected to converge, b
would be nonunique and nonperturbative, following the d
cussion in the Introduction. Such nonuniqueness is proba
st
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an advantage, permitting a choice of deterministic dynam
with simplified topology.

The weak noise case depends on this underlying dyn
ics: for the hyperbolic case (l.4), the cycle perturbation
theory of@10,11# or numerical evaluation; for noise-induce
escape from a strongly chaotic attractor (l'4), the analytic
methods of@15#; and for tunneling from a stable fixed poin
analytic approaches analogous to quantum mechanics.

The intermittent case with weak noise remains an op
problem; the results here show that weak noise does not
stantially regularize cycle expansions of intermittent s
tems, at least with respect to the rate of convergence.

Finally, note that the cumulant expansions discussed h
are effective only for the first few eigenvalues; more of t
spectrum can be found by representing the operator as a
trix in a suitable~truncated! basis and applying standard d
agonalization procedures. The convergence of this met
for the leading eigenvalue considered here depends on
well the basis represents the leading eigenfunction. Dir
diagonalization runs into difficulties in the weakly stochas
intermittent case for reasons related to those of the cumu
expansion: There are many closely spaced eigenvalues
verging to a branch cut in the deterministic limit@16#.
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