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Traces and determinants of strongly stochastic operators

C. P. Dettmanh
Niels Bohr Institute, Blegdamsvej 17, 2100k€ahavn/Q Denmark
(Received 24 July 1998

Periodic orbit theory allows calculations of long-time properties of chaotic systems from traces, dynamical
zeta functions, and spectral determinants of deterministic evolution operators, which are in turn evaluated in
terms of periodic orhits. For the case of stochastic dynamics a direct numerical evaluation of the trace of an
evolution operator is possible as a multidimensional integral. Techniques for evaluating such path integrals are
discussed. Using as an example the logistic higg) =\x(1—x) with moderate to strong additive Gaussian
noise, rapid convergence is demonstrated for all valueswith strong noise as well as at fixed=5 for all
noise levels[S1063-651X99)10604-4

PACS numbes): 05.45-a, 02.50.Ey, 02.60.Jh

I. INTRODUCTION number of respects: The stochastic dynamics is equally close
to many slightly different deterministic dynamical systems;

Periodic orbit theory is a remarkable tool in classicalso, the concept of a unique perturbation theory becomes less
[1-3] and quantum[4,5] chaotic systems, permitting the defined, in addition to the lack of convergence of such a
evaluation of long-time properties, such as escape rates, diheory. Also, Gaussian noise has no preferred status; for
namical averages, and energy levels in terms of short unwveakly stochastic systems, all types of noise distributions
stable recurrent motions, that is, periodic orbits or “cycles.” with a given variancer? are identical to ordes?.

In classical hyperbolic systems with known topology, such The approach taken here is that the relevant quantity, the
as the repeller of the mapx61—x) discussed below, con- trace of an evolution operator, is evaluated numerically, us-
vergence can be impressive: the escape rate is computedittg very little detailed information about the dynamics, in
nine digits from the eight cycles of period 4 or less. Theparticular without reference to periodic orbits. The method is
lowest energy levels of heliufi6] are computed to an accu- general enough to include any type of dynantimgperbolic,

racy far better than would be expected from a semiclassicdahtermittent, attracting and uncorrelated noise, subject to
approximation. Even when there is intermittency, hence hysmoothness of both dynamics and the noise distribution, with
perbolicity is lost, it is possible to get sensible results usinghe latter decaying exponentially at large distances. Here, as
special techniques in both the classicaB| and quantuni9]  in Refs.[10,11] the noise is additive, but this is not a neces-
cases. sary condition.

Recently the theory has been extended to classical sys- From the trace, it is straightforward to construct the spec-
tems with weak additive noise, using Feynmann diagramgal determinant, and hence highly convergent expansions for
[10] or smooth conjugacy techniquikl]. There are a num- escape rates and dynamical averages, in the spirit of cumu-
ber of motivations for such extensions: noise at some level igant expansions, as in standard periodic orbit theory. This has
present in all physical systems; it regularizes the theory, resome similarities to Ref.12], where various approximations
placing Diracé functions by smooth kernelsee belowand  to the quantum trace are compared.
fractal distributions by smooth functions. There is also some Section Il outlines the formalism required for the calcula-
hope that the noise may effectively truncate the theory, rention; in particular, casting the trace as a multidimensional
dering irrelevant contributions from periodic orbits longer integral. Section Il discusses numerical approaches for
than the finite memory of the system. evaluating this integral. The results are given in Sec. IV and

The result of these investigations is a weak noise perturdiscussed in Sec. V.
bation theory, representing the trace of the evolution operator
and derived quantities as a power series expansiaer the
noise level. The coefficients are combinations of higher de- IIl. FORMALISM

rivatives of the map evaluated at the periodic orbits of the The goal is to determine the long-time properties of sto-

deterministic unperturbed system. Numerically, the coeffixhastic dynamical systems, here one-dimensional maps with
cients themselves converge at a similar rate to the classicglygitive noise:

periodic orbit theory, but the power seriesdris useful only
for weak noise, sayr<<0.03, suggesting the following ques-
tion, the subject of this paper: Xn+1= f(Xp) +0éy, (1)

To what extent does periodic orbit theory survive strong
noise, and how fast does it converge?

Strong noise differs qualitatively from weak noise in awheref(x) Is @ known function, for example the logistic

map,

*Electronic address: dettmann@nbi.dk f(xX)=Ax(1—x). (2
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o is a measure of the strength of the noise dpdre inde-  Which leads to the recursive equation
pendent identically distributed random variables with unit
variance,

n—1
Qn=% tr LN 2_1 Qutrc™™ ™. (10)
<§m§n>:5mnv ) "

such as a normalized Gaussian distribution. The methodéu
used here are equally applicablet@ndé that depend om,

The utility of the cumulant expansion as a method to cal-
late the leading eigenvalig: depends on a rapid decrease
of the Q, with n, corresponding to widely spaced eigenval-

an?ng?ena-g‘grtshséasa?]m:\?ir?Iff‘)tlrrlzl_l;tlﬁri]z.more convenient to ues. For example, an isolated fixed point of stabilityvith-
g ; out noise has eigenvalugs,=|A|A™, m=0,1,2... and

consider the discrete Fokker-Planck equation for a probabil- n(n+ 12, This superexponential conver-

S . e cumulantsQ,~A"
:tnygdéitgt;gtlcr)]r;p n(éi)sér.ansported by the dynamics and diffus gence is characteristic of hyperbolic systems, and also, judg-

ing by the results below, stochastic systems. For other

classes of operators more general methods may be required.
Pn+l(X)E£[Pn](X):j S, (X=f(x"))pn(x")dX’, (4 The trace in Eq(10) is straightforward to write down as

an n-dimensional integral, a discrete periodic chain reminis-

where §,(y) is the noise kernel, for example, cent of a path integral, obtained in RgL3],

e o= [T Tl a0 fogn, D
o4(y)= , 5 tr =f X o Xj+17 T(X))),
(y) o i2m (5 L XL 0otXi e T
reducing to a Dirads in the deterministiar=0 limit. where the indey is cyclic, sox,=X,. In the noiselessd

Long-time properties of the dynamics are obtained from=0) limit, the integrand is a product of Dira& functions,
the leading eigenvali® of the linear evolution operatag, ~ and the trace is given by a sum over the fixed point§"of
which are (the inverses of solutions of the characteristic that is, then cycles off. In Refs.[10,11] the weak noise
equation limit is obtained by a saddlepoint expansion of the integral
around these cycles. Here, the integral is performed numeri-
de(1-z£)=0. (6)  cally, up ton=5, as described in the following section.

For example, the probability of a point initially in an open

system remaining there aftariterations is typically propor- lll. NUMERICAL METHODS

tional toe™ ¥ where the escape rateis related to the lead- The required quantities, ", are n-dimensional inte-
ing zeroz, by grals, which in the case of weak noise<1) have a large
number of sharp peaks surrounding the periodic points of the
y=-Inz. () deterministic map. Obtaining an accurate numerical estimate

Dynamical averages and diffusion coefficients can be ob9f the integral for anyn>2 seems prohibitively difficult,

tained from the leading zero of appropriately weighted evo=Nce Monte Qarlo approaches t_ake too long to converge, and
lution operatorg 13 direct integration schemes require a small step size, but cover

The spectral determinar{®) of an infinite dimensional a large configuration space. See RéH] for more discus-

. ) Lo ion.
operator may be defined by its cumulant expansion in power . o .
of z, using the matrix relation In dettr In and Taylor ex- :lgér;(?sfiiiethgfiri:ursjﬁj(?sr ssrlm)"cia gr?(ljszeigdssg(ogwen-
panding the logarithm: y 9 ys exp

tially fast at the boundaries. This in turn implies that the

zon simplest possible integration algorithm, summing the inte-
def(1l—zL)=exp — Z —trgn) grand at a cubic array of coordinate values, converges faster
n=1 N than any power of the step size, and is typically exponential
72 once the step size is smaller than
=1—ztrl+ 3[(tr5)2—tr52]— . This remarkable convergence rate for smooth, exponen-

tially decaying integrands follows from the observation that

o by multiplying the terms near the boundary by appropriate

=> Q2" (8)  factors, it is possible to obtain algorithms of higher and
n=0 higher order in the step siZel4]. Exponentially decaying

. ) integrands are impervious to any such coefficients, and so

an approximation fog, is obtained by numerical root find- Note also, that having chosen, say, and x;, and the
ing on then_th degree polynomial give.n by the t_runcation of argument of the exponentiak; (x,— f(Xo))%/(20) happens
the determinant. The above expression @y quickly gets o e too small, it is not necessary to consider the other
complicated; it is easier to expand the derivative This provides a very substantial savings in time fiof 2.
o Finally, the integral is symmetric under a cyclic inter-
—zidetl—zﬁ) —de(1-2zL) E tron, (9) change of_the<j : t_his implie_s an ad_di_tiongl saving of a _fact_or
dz n=1 n. The logic required here is not trivial since the contribution
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differs depending on whether some of theare identical. TABLE I. Convergence of the spectral determinant, as mea-
For example, fom=4, choose two value%n;, and Xyax  Sured by—1ogidQs|, whereQs is the coefficient ofz® in the cu-
beyond which there is no possible contribution. Then suninulant expansiorig) for various types of dynamics of the logistic
Xmin<Xo=<Xmax, definingx, to be the largest of the; , and map(2). Larger numbers |mply fgster convergence, giving roughly
the one occurring first, if more than one are maximum. sunthe number of converged digits in the escape rate calculated to
Xmin=X1=Xg, checking that the argument of the exponentiaI:4'

is not too small. Sunx,;j,<X,<Xg, again checking the ar-

gument of the exponential. Then sury,i,<X3<Xq, and c
multiply each contribution by 4. Ik, =X, thex; could form Type 001 003 o1 03 !
a 2 cycle repeated twice, so whep=Xx,; count the term ¢ Pure noise 12.7 127 124 127 126
twice instead of four times, and stop the sum oxgrto 1 Intermittent —-2.3 —0.8 1.2 3.8 8.5
avoid double counting. Finally, the repeated fixed poigt - Stable 1 cycle 25 29 21 59 118
=X;=Xp,=X3 has been excluded, so sum this explicitly and 3 Bifurcation  —0.3 07 28 74 132
count it once. The case=5 is simpler as there is only a 35  staple 4 cycle 0.3 14 34 7.8 132
repeated fixed point, but there are more possibilities for 3 o7 = cycle 0.4 11 36 78 133
which of thex; are maximum. 3.72 Chaos 15 14 41 80 134
Even with the above short cuts, large small o, and 3.84 Stable 3 cycle 16 24 46 81 134
stringent precision requirements can lead to sums &f 10 4 Ulam map 29 29 4.9 82 138
terms. This means it is advisable to group them in §iming Repeller 9:2 9:1 8:4 9:1 13:3

the argument of the exponendias they are summed; then,
combine the groups from smallest to largest to minimize
roundoff error. noise must move the trajectory out of the interval to escape.
Given the above algorithm the step sizeés decreased In cases like this, the stochastic behavior is analogous to
until two successive estimates agree to within a specifiequantum tunneling, and is exponentially suppressed for small
precision(for example, ten digils Since the amount of time  ¢. At bifurcation points, including.=1, the stability of the
increases ash™", the optimal sequence is probably relevant cycles is marginal, leading to intermittency. Mar-
=hee /". Note that large initial values df can lead to a ginal cycles are difficult to treat using cycle expansions, and
zero result as the entire contribution region may be missedit is one of the goals of this paper to understand how this
With the above algorithm, calculation of the trace up topoor convergence is modified by the presence of noise.
n=5 with =0.01, anch=6 for somewhat higher values of The results of numerical evaluation ofdf up ton=5
o, is feasible for the case of Gaussian noise and smoothre shown in Table I. The spectral determinant is evaluated

one-dimensional dynamics. using Eq.(10), andQs, the coefficient ofz® is noted. Since
for the parameters shown, the first zero of the determinant is
V. RESULTS close to 1,—log,;(Qs| gives roughly the number of signifi-
cant digits ofz, and hence the escape rate is evaluated to
The logistic mapf (x) =Ax(1—x) for various values ok =4, It also gives the approximate rangezofver which the
exhibits most of the behaviors observed in one-dimensionah=4 approximation is valid.
maps. For alh=1 any initial x outside the rangg0,1] ends It is seen that, for the trivial case=0, corresponding to

up at —o, while the behavior of points within this range pure noise, and for strong noise=1, the calculation is lim-
depend o\ as follows: For BsA<1, the pointx=0 is a ited by the double precision arithmetic: evaluation of the
stable fixed point, marginally so at=1, and then unstable trace beyonch=4 is superfluous at this level of precision.
for A\>1. For 1=\ <3, the fixed poinx=1—1/\ is stable, Almost as precise is the cake=5, which has a repeller with
and then bifurcates to a stable cycle of period 2. This cycle icomplete binary symbolic dynamics in the absence of noise,
turn becomes unstable, bifurcating & 4 cycle, then an 8 and hence is an ideal candidate for cycle expansion methods.
cycle, and so on, ta~3.57 at which point a chaotic attrac- Nine significant digits are obtained @t 4, corresponding to
tor forms. The period doubling cascade in the presence gfist 8 cycles. The presence of noise makes methods based on
weak noise may be described by the renormalization apenumerating these cycles more difficit0,11], but conver-
proach of Ref[13]. At larger values ok more stable cycles gence is rapid at any noise level.
are created, includina 3 cycle, which is stable at=3.84, The other cases, where escape is induced by the presence
leading to a pattern of alternating stable “windows” sur- of noise, do rather poorly for small noise. The significance of
rounded by nonattracting unstable cycles and chaotic attrag-=1, 2, 3, 3.57, 3.84, and 4 are discussed above: the other
tors containing many unstable cycles. 4 the attractor values in Table | aré = 3.5, which contains a stable 4 cycle,
fills the interval[0,1], and in this case, the Ulam map, the and A\ =3.72 that is not near any large stable window, and
dynamics is exactly solvable. Far>4 almost all initial con-  numerically exhibits a chaotic attractor, although mathemati-
ditions leave the interval, but infinitely many unstable cyclescal proof is difficult. The nature of the underlying attractor
remain, the closure of which forms a fractal repeller with aseems to have little effect on the rate of convergence, except
well-defined escape rate. that the intermittent case\&3 and particularlyx=1) is
Imposing additive noise to the logistic map leads to esdivergent ato=0.01 to this level of approximation; the es-
cape for allA>0, although this may be very unlikely if is  cape rate probably converges at impossibly langeeither
small. At A=2, for example, every pointexcept the end- for the current numerical approach, or for standard cycle
points is attracted to the stable fixed poinbat 1/2, and the  expansion techniques. In the other cases, particularly
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towards largemn, the expansion appears to be converging,an advantage, permitting a choice of deterministic dynamics
albeit slowly. with simplified topology.
The weak noise case depends on this underlying dynam-
V. DISCUSSION ics: for the hyperbolic casen(>4), the cycle perturbation
theory of[10,11] or numerical evaluation; for noise-induced
To summarize: It is feasible to evaluate a stochastic tracgscape from a strongly chaotic attractar{4), the analytic
directly in terms of multidimensional integrals, because thenethods of15]; and for tunneling from a stable fixed point,
numerical evaluation of such integrals converges exponerynaiytic approaches analogous to quantum mechanics.
tially with the number of steps. Cumulant expansions can be The jntermittent case with weak noise remains an open
applied to classical dynamics with strong external noise, alproblem; the results here show that weak noise does not sub-
though there is as yet no periodic orbit theory in this regimestantially regularize cycle expansions of intermittent sys-
with which to evaluate the trace. The convergence of thgems, at least with respect to the rate of convergence.
cumulant expansions is improved by the noise, whether the  finajly, note that the cumulant expansions discussed here
underlying dynamics is hyperbolic, intermittent, or stable. Ingre effective only for the first few eigenvalues; more of the
the case of strong noiser(>0.3 in the present conteéxbr  spectrum can be found by representing the operator as a ma-
hyperbolic underlying dynamics, the cumulant expansion {Gyiy jn a suitable(truncatedl basis and applying standard di-
fourth order is sufficient to compute the leading eigenvaluéagonalization procedures. The convergence of this method
to respectable accuradyoughly eight digits hene for the leading eigenvalue considered here depends on how
_ What are the optimal methods for determining the long-yell the basis represents the leading eigenfunction. Direct
time properties of stochastic systems? The strong noise caggagonalization runs into difficulties in the weakly stochastic
is best treated by numerical evaluation of the trace, describgtermittent case for reasons related to those of the cumulant

here, requiring little knowledge of the underlying dynamics. expansion: There are many closely spaced eigenvalues con-
The elements of periodic orbit theory, traces, and determigerging to a branch cut in the deterministic lirfit6].

nants indeed survive strong noise and converge rapidly,

without reference to periodic orbits. This means thahg
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